Lesson Plans

McCALL OUTDOOR SCIENCE SCHOOL University of Idaho College of Natural Resources

ISS

Title: Dissolved Oxygen Grade Level: 5th-8th

Tonici	Water Quality Discolved Organ
Paalvanound:	Dissolved owners is the amount of owners dissolved
Баскугоили:	Dissolved oxygen is the amount of oxygen dissolved
	Into a body of water; it is an indicator of water
	quality. Dissolved oxygen (D.O.) is incorporated into
	the water by waves, rapids, waterfalls, and
	photosynthesis. Temperature affects dissolved
	oxygen; warm water decreases D.O. and cold water
	increases D.O. Higher atmospheric pressure also
	holds in more dissolved oxygen into a body of water
	than lower pressure. D.O. is measured in milligrams
	per liter or parts per million.
Next Generation Standards:	LS2, LS2.A
Goals:	Students will learn how to measure dissolved
	oxygen using an YSI DO 200 meter, as well as create
	a mini inquiry project as to what will add more D.O.
	to a body of water.
	Essential questions:
	• What is dissolved oxygen?
	How does dissolved oxygen affect what lives
	in a body of water?
	• What factors affect dissolved oxygen?
	 How would dissolved oxygen differ between
	a lake and a fast moving river?
Objectives	a lake allu a last moving river:
Objectives:	• Students will understand that D.O. is added
	the statistic the man summer and if on plants and
	that it is the measurement of now much
	oxygen is dissolved into a body of water.
	• Students will be able to understand that D.O.
	is as important to aquatic life as oxygen in
	the air is to humans. Students will also
	understand that water with higher D.O.
	concentrations supports more diverse and
	abundant aquatic life.
	 Students will recognize that some factors
	that raise D.O. levels are: waterfalls, rapids,
	and waves. Factors that lower D.O. levels:
	number of aquatic organisms (animals and
	plants), higher water temperatures and
	lower atmospheric pressure.
	• Students will hypothesize that a fast moving
	river would have a higher D.O. concentration
	than a lake, because it is churning, running

	water, and tree cover lowers or keeps the water cooler.
Materials:	 Three large mason jars per group Three pitchers Enough straws for every student Dissolved oxygen meter per group (ex: YSI DO 200 meters) Turkey baster one or two per group Scrap paper and pencil Water: ice water, room temperature water, hot water (enough to fill each mason jar half way)
Set up:	Have a pitcher of water sitting out so that it has time to become room temperature. Have iced water and heated water readily accessible. Make sure the D.O. probes are calibrated and measuring similar concentrations.
Classroom Time:	45 minutes
Introduction (Engage):	Ask students what humans need to breathe to gauge their understanding of oxygen's importance. Shift the discussion to what aquatic organisms, such as fish, need to breathe. Explain that dissolved oxygen is oxygen from the air being incorporated into a body of water. This happens when water goes over a waterfall, when an aquatic plant releases oxygen through photosynthesis, etc. The temperature and air pressure also affects how much D.O. stays in the water.
Activity (Explore):	 Put your students into groups depending on how many D.O. meters are available for use, minimum 3 children per group. Explain that they are going to be measuring the D.O. of cold, room temperature, and hot water using the probes. Students will be measuring D.O. before and after blowing bubbles through a straw into the jars of water. Give students the opportunity to write a hypothesis about which jar will have the highest D.O. concentrations before and after blowing bubbles into the jar. While students are writing their hypothesis, fill the jars halfway with water with each temperature of water. Students should then begin their experiment by measuring the D.O. in each jar and recording the results. After measuring all three temperatures

4.

Water Expeditio

-1---

	without bubbles, students should begin the bubble
	blowing section of their experiment. They should blow through their straws continuously for 30
	seconds, recording the highest D.O. reading in the 30
	second increment. Express caution that excessive
	bubble blowing could result in water splashing their
	face; with the hot water this is the biggest concern.
Explanation:	their results.
	You should expect to find that the cold water has a
	higher standing D.O. concentration, followed by the
	room temperature water and the hot water should
	be the lowest. After blowing bubbles, the trend
	should be higher.
	A good way to show this data is by creating a graph
	in Excel. While creating a graph for the class, have
	the groups hypothesize as to whether a fast moving
	river or a lake would have higher D.O.
	concentrations.
Elaboration:	Have the students explain why they think they got
	ne results that they did. Be sure to fill in it pocessary that D.O. concentrations are generally
	higher the colder the water gets. In addition
	hubbles from the straw are representative of how
	oxygen would be incorporated into water from
	natural processes, such as waves, rapids, waterfalls,
	or aquatic plants.
	Ask the students how they think D.O. affects what
	lives in a body of water. The more D.O. that is in a
	body of water allows greater biodiversity, or more
	types of organisms in larger numbers. Explain that
	some aquatic organisms have gins (i.e. lish) while others still have lungs (i.e. lunged shail). Ask
	whether they would expect to see more fish or
	lunged snails in a body of water with really low D.O.
	Some students may question why the D.O. increased
	in the jars even though humans breathe out carbon
	dioxide. Explain that even though humans do
	breathe out more carbon dioxide than when we
	breathe in air, we are also breathing out about 75%
	of the oxygen that we initially breathe in. This is
	what makes CPK a mesaving technique.

University of Idaho College of Natural Resources

AL Water Expeditions	Lesson Plans, 201
Evaluation:	You can evaluate your student's comprehension of the subject matter by their hypothesis of which
	body of water would have a higher concentration of
	use their new knowledge from the activity
	stream would have a higher concentration of D.O.
	Allow time at the conclusion of the lesson to recap on the major information covered to ensure
	comprehension is achieved.

Additional resources:

The following AL@ website has good additional information about dissolved oxygen.

http://adventurelearningat.com/wp-content/uploads/2012/08/DO-and-BOD_description.pdf

